{ "cells": [ { "cell_type": "code", "execution_count": 2, "metadata": { "code_folding": [ 0 ], "collapsed": false }, "outputs": [ { "data": { "application/javascript": [ "require(['base/js/utils'],\n", "function(utils) {\n", " utils.load_extensions('usability/python-markdown/main');\n", " utils.load_extensions('usability/codefolding/main');\n", "});" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "%%javascript\n", "require(['base/js/utils'],\n", "function(utils) {\n", " utils.load_extensions('usability/python-markdown/main');\n", " utils.load_extensions('usability/codefolding/main');\n", "});" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Test Code Cell\n", "This section tests the ability to run Python inline using the a code cell. The code cell displays the Python code in the resulting document and makes the results of the Python analysis available for later reference as shown below." ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": true }, "outputs": [], "source": [ "x1 = 1\n", "x2 = 1\n", "y = x1 + x2" ] }, { "cell_type": "markdown", "metadata": { "variables": { "x1": "1", "x2": "1", "y": "2" } }, "source": [ "The above code demonstrates that {{x1}} + {{x2}} = {{y}}." ] }, { "cell_type": "markdown", "metadata": { "code_folding": [] }, "source": [ "# Test Codefolding\n", "This section tests the ability to run Python inline using the codefolding extension. The codefolding extenstion hides the content of code cells that start with a comment, thereby running the Python code without displaying the source in the resulting document. This feature makes the results of the Python analysis available for later reference as shown below." ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# hidden code\n", "x3 = 2\n", "x4 = 2\n", "y2 = x3 + x4" ] }, { "cell_type": "markdown", "metadata": { "code_folding": [ 0 ], "variables": { "x3": "2", "x4": "2", "y2": "4" } }, "source": [ "The hidden code demonstrates that {{x3}} + {{x4}} = {{y2}}." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Test MatPlotLin Integration and Inline Plotting\n", "This section tests the ability to use plotting methods to create a basic plot and then include it in the document." ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEZCAYAAACQK04eAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XucnVV97/HPLzOZTO4XCUlEEsSKSrgIlh7bajJW8YUQ\nLt4oE1Gk0tpyBCq2JwKG2QEtagtVauM5pyBaIEFFQchYNbVMhtYLWJCYUA9UJBEhk5Awucwlk5n5\nnT/W8/A8s7NnMpPsPc++fN+v17xmZt9m7T17/571/NZvrWXujoiI1I4JWTdARETGlwK/iEiNUeAX\nEakxCvwiIjVGgV9EpMYo8IuI1BgFfhGRGqPALzXFzN5qZr/Muh3FYGYfNrOHi/yY3zWzDxb5MZ81\ns7cX8zHlyCjwV6Hog9ZtZnvM7CUz+w8z+6iZWdZtGy0zazKz3xThcQbN7Pj4d3d/2N1ff6SPO8zf\nmmRmN5nZluj1f8rM/qoUf6sYzCxnZnemL3P3s939zuHuM8JjDZrZPjPba2bPmdnNZhbHF4++DvUY\nRfmfy6Ep8FcnB5a5+wxgIfBZYAVwe6atKjIzqxvtTUvakMQ3gbcB7wKmAR8E/szMvjhOf/9lZlY/\n3n8TOMXdpwNvB5YDf5pBG2Q03F1fVfYF/Br4o7zLzgAGgMXR75OAvwO2ANuALwON0XVNwHPAXwPb\ngeeBC4CzgaeAncAnU489CfgC8Nvo6++BhrzHuhroiB7rw6n7ng1sBvakbjcF6Inauze6bgGQA+4F\n7gR2A38SPa8fAy9Fj/0PwMTosduBQWBf9Djvj9rzm9TffwPQFt1/E3Bu6rqvAv8IrIva8BPg+GFe\n87dHbT4m7/LfA/rj+wHPAm9PXZ8D7kz9/k3gBaAT2ACcmLruFcAD0XP/KXAj8HDq+kHgcuBp4FfR\nZV8Etkb3+Rnwlujys4D9QF/02jweXd4GfCT1mH8KPBk9/83AacM8/8H0awN8A7g1//043HsFmFrg\nfz4/689StX6px18j3P1RQmB9S3TRZ4HfAU6Nvh8DXJ+6yzzCh3RBdPltwAeA04C3Ateb2aLottcR\nAtyp0dfvAZ/Ke6wZwCuBjwD/aGYzo+tuB/7Mw9nJYuAhd+8mBKbn3X26u89w9xei258HfNPdZwJr\nCIHiKkJQ/H1CAL48es5LovucEj3ON9OviZlNBB4EvgfMBa4A7jazE1I3+2NCcJ4N/DfwmQIvL8CZ\nwE/c/bfpC939EcLr/kfxRQxNe+SnQFoJ/4+5wGPA3anr/hHoBuYTDnqXFrj/+YSD4YnR748Q/iez\nCa/XN82swd2/B/wNcE/02pyW3z4zez/QAnww+v+cSzjoD8ei+51IeI88XuA2Bd8r7t7Fwf/zbSP8\nLTkCCvy15XlgTpTr/1PganfvdPd9wE3ARanbHgA+4+4DwNeBOcAX3L3L3Z8k9AJPjW67HLjB3V90\n9xeBVYQ0R/qxbnD3AXf/F0IP/HXRdX3AYjOb4e673T0OFsOlZ37k7g8AuHuvuz/m7o+4+6C7bwH+\nL7B0lK/Hm4Gp7v5Zd+9394cIvfvm1G2+7e4/i16Hu4E3DvNYRxHOnAp5Ibr+kNz9q9FrfIDwOp5q\nZtOjtNZ7gOvdvcfdNwNf4+DX6abof7o/ery73f2l6PW5hXAwj197K3D/tMuAz7n7f0aP9Yy7bx3h\n9o+Z2S7CWck/ufsdBW4z0nulYsagKl0WeUDJzquAXYQgNAX4z9R4rzG0I7DT3ePeZE/0vSN1fQ8h\njw2hJ78ldd3W6LL0Yw2mfu9O3fe9hLODz5rZRkIK6ScjPIfn0r9EvfNbgDdFz6mekNIYjVcC+YOJ\nW1Jtd4Z/zvl2EHrqw/2djmGue1kU3D8DvI/Q4x+M2nBU9Lfr89pbKAgPeT7R4PKfRG1wwpnXqA5C\nhPfLr0Z5WwhpoGcOcZtDvVdkHKjHXyPM7AzCB+zfCafrPYT88ezoa1Z0On84ngeOS/2+MLrskKLe\n9AWEQHc/ITcMhatAClWHfJlw9vE7UfrnOkb/vn4eODav2mkRIfc8Vv8K/A8ze1X6QjP7H4Q02r9G\nF3UR8tmxBSTPaTkhlfX26Lm8mqRXvoMwVrAwdd/0z7GXXx8zeythnOb90f93NiHXb/m3HcZvGP5g\ndrhGeq9ojfhxosBfveJ86wwzWwasJQwibo563/8EfMHM5ka3O8bM3nmYf2st8CkzO8rMjiKMCRyy\nJNDMJprZB8xsZpRK2UvI2UPoIb/CzNIHo0KpgGnR/brN7PXAX+Rd3wG8Zpgm/JRw9vG/orY0AcuA\ne0b4ewW5+w+BHwLfMrMTzazOzN5MeB2+6O5xT/znwEVmVm9mv0s440k/l/3ALjObSsjBx48/AHwb\nyJnZ5CiPfskhmjWdcLB40cwazOx6Qo8/tg04boQy39uAvzKz0y34HTMrdLAZi5HeK4X+51ICJQ/8\n0QfgcTN7MPp9jpmtj2qcf2Bms0rdhhr1oJntIZxKXwPcTBgMjK0gDFb+xMx2A+uB9KBmfu9rpN7Y\npwnplY3R18+iy0Zz34uBX0dt+DPCADLu/ktCkHjGzHaZWdwzzn+svyL0lPcQ8vv35N0mB3wtms/w\nvvRjuHsfYcDyXYQe9ZcIA5lPpdo9ltfhvcBDhMHiHuBHwFp3/0TqNisJB6KXoralB2//mZAG+S2h\nwujHeX/vY4SDwzbgK9HXSAPF34u+niJUE/UwND0UD3bvNLOD0mPufi8h9bSG8Pp+mzBIXMhoe+vD\nvlcK/M/nj/IxZYwsSeOW6A+YXU3Iv0539/PM7PPAi+7+eTNbAcx290+WtBEiGTCzrxJSJW+PB1tF\nykFJe/xRvvNswiljfDp5HqEagej7BaVsg0iGLiNUuJyedUNE0kpd1fP3hMGldM5unrvHFQ4dhBpv\nkarj7v3A57Nuh0i+kvX4owHF7VFddsHBo6hcUCP5IiLjqJQ9/j8AzjOzs4FGYEa0IFSHmc13923R\ngN32Qnc2Mx0QREQOg7uPWJFWsh6/u1/r7se6+6sJM0L/zd0/SMh5xmVolxBqt4d7jKr9amlpybwN\nem56fnp+1fc1GuNZxx+36LPAmWb2FGH9ks+OYxtERGreuCzZ4O4bCCsN4u67gHeMx98VEZGDaeZu\nRpqamrJuQslU83MDPb9KV+3PbzRKPoHrcJmZl2vbRETKlZnhWQ3uiohIeVLgFxGpMQr8IiJF1tra\nzumnX8acORcxe/YlnH765bS2tmfdrJcpxy8iUkStre1cfPE/0dm5kPROnfPnX81tt13AOecsGf7O\nRaAcv4jIOFu58h46OxeRvz3ztm238A//sD6bRuVR4BcRKaJNm3Yw3BSp3t668W3MMBT4RUSKpLW1\nnQMHugkbnx2ssXGg4OXjTYFfRKRILrvsS4TdM18gbP+c9mGuuOLM8W9UAeOyZIOISLVrbW1n27Z+\noCG6pANojn7fTWPjnpIP7I6WevwiIkVw5ZW3AQPAMmAvsAB4HbAQmMCKFe/LsHVDqZxTRKQIzN5L\n2M/+NOAYoJ2wFclOJk7cRV/ff4xTOw5dzqlUj4jIEcrlVhNy+8uANkIy5fWEM4A9XHvtB7JrXAHq\n8YuIHKFJk5bR19cN/D75vX3owP2RcWuLevwiIiWWy62mr28yMAl4mqG9/S6OP/7YLJtXkAZ3RUSO\nwOc//32gF7iKUL//NPBs9L2TW2+9KrvGDUOBX0TkMLW2ttPTM5FQsrkG+EvgtcBxwH7mzZtQNiWc\naQr8IiKHaeXKe4BuQm9/O7Aa+A3wS2Aft9+eP4mrPJR0cNfMGgl77U4iHBK/4+7XmFkOuAzYEd30\nGnf/Xt59NbgrImWtoeH9HDiwEzgBWA6sB+qAJ6iv386BA+NTwpmW+eCuu/ea2dvcvdvM6oF/N7O3\nAA7c4u63lPLvi4iUSrIuz/Ekvf1GQr7fOPnkN2TZvBGVvKrH3bujHxsIh8KXot9HPCKJiJSziy++\nmVC778Bs4JWEEDcA/IIbb/xQhq0bWclz/GY2wcx+Tli44iF33xxddYWZPWFmt5vZrFK3Q0SkWHK5\n1XR21pGsy2PAfwO/Bn5RVuvyFFLywO/ug+7+RuBVwBIzawK+DLwaeCNhGbubS90OEZFiCSWclbEu\nTyHjNoHL3XebWSvwu+7eFl9uZrcBDxa6Ty6Xe/nnpqYmmpqaSttIEZFDSEo4u4HfAk3kr8uTy10+\nbu1pa2ujra1tTPcpdVXPUUC/u3ea2WTg+8AqYLO7b4tu83HgDHdfnndfVfWISNl5zWs+xDPPvEiy\nLs/rSHL7m2lpece4Bv58o6nqKXXgPxn4GiGlNAG4093/1sz+mZDmcUJS7KPu3pF3XwV+ESkrra3t\nLFv2RUKNygnAKSS9/R1MmLCDgYHxW5enkMwD/5FQ4BeRcnP66Zfz+OO/BeYCuwiDu3EJZx+nnTaH\nxx67LcsmZl/HLyJSTTZu7CCsx1OohHNTWZdwpinwi4iMQi63moGBXkIFj5OUcIatFY8/vq6sSzjT\nlOoRERmFsOZ+L7AoumTohK11664ui8CvVI+ISBEka+4PRpcM7e2X+4StfFqdU0TkEJI19ytzwlY+\npXpEREYQSjhvJeT155Jfwjlz5j46Ozdk2cQhRpPqUY9fRGQEV155G0PX3I+DfijhvPvuGzNs3eFR\nj19EZARm7yWZsFUea+6PRIO7IiJHYPnyFYSllytvzf2RKPCLiBTQ2trO2rW/IAT5QhO2NlbMhK18\nSvWIiBQQlmfYSZipWwfMALoIJZy7mDevj23bvp9lEwvS4K6IyGHatGkHyaBuP7CPsH34fqC3bDdS\nHw0FfhGRPMl+ug3AGuAvgdcCxwH7mTdvQkVN2MqnVI+ISJ7Zs8+ns7OLsDzDSwxdhXMn69atLNvA\nr1SPiMgYHbyf7hzCEg0O9NLYOFC2QX+0FPhFRFIqfT/d0VCqR0QkkizP0A2cBhxD/n66fX3lNWEr\nnyZwiYiMQbI8Q7yf7gTg9YQzgD1ce+0HsmtcEanHLyISGbo8Q/ntpzsamQ7umlmjmf3UzH5uZk+a\n2U3R5XPMbL2ZPWVmPzCzWaVqg4jIaB28PEN6MbZJnHrqKRm2rrhKFvjdvRd4m7u/kXDofJuZvQX4\nJLDe3U8Afhj9LiKSmWR5hm6S5Rniuv3XAgMVuzxDIeOS6jGzKcAG4MPAt4Cl7t5hZvOBNnd/fYH7\nKNUjIuOiUpdnKCTzOn4zm2BmPwc6gIfcfTMwz907opt0APNK2QYRkUPZuLGDal2eoZCSVvW4+yDw\nRjObCXzfzN6Wd72b2bDd+lwu9/LPTU1NNDU1lailIlKrli9fwcBALyGfHy/PkKy5X+7LM7S1tdHW\n1jam+4xbVY+ZrQR6gMuAJnffZmYLCGcCSvWIyLgLdfufBfqoxOUZCsm6queouGLHzCYDZwKPAw8A\nl0Q3uwS4v1RtEBEZycqV9wDTqeblGQopZapnAfA1M5tAOMDc6e4/NLPHgW+Y2UeAZ4ELS9gGEZFh\nhdx+H8mErdeRbLSyuSqWZyhEE7hEpCblcqtZtaqVkNaZS/6ErZkz99HZuSHLJh6W0aR6FPhFpCZN\nmrSMvr5eqiW3H8u8nFNEpBzlcqvp65tMreX2Ywr8IlJzPvOZdYSeffUuvTwSrc4pIjUll1tNf/8U\nQu9+I9BEfm4/l7s8wxaWnnr8IlJTwkYr8Szd/MXY+rj77hszbN34UOAXkZrR2tpOT89EwlzSgzdR\nnzixu6pz+zGlekSkZlx88c3AAeD9wIPAapLeflfVbLRyKOrxi0hNSDZR7yXk9s9NXbuXCRM6qz63\nH1Mdv4jUhClTzqenB8JkrV0Mrdvv47TT5vDYY7dl2MLi0J67IiKkc/vpjVZeSbI8w6aq2mjlUNTj\nF5GqN3v2+XR2HiBZkye90cpOmpsXs2bN5zJsYfFo5q6I1LyDc/tNJButvMiECdurJuiPlnr8IlLV\nwpo8dVR7bj+mHL+I1LTW1nb6+hpRbn8o9fhFpGotWHAh27btoxZy+zHl+EWkZrW2trNtWz9hlu7B\nuf26utrL7ceU6hGRqhRm6Q6SzNLtJMntH+BTn/pwdo3LmHr8IlJ1kkqeLuC3DJ2l2wXUzizdQpTj\nF5Gqk1Ty1BMGctN76f6S448f5Fe/+laWTSyZzHP8ZnasmT1kZpvNbJOZXRldnjOz58zs8ejrrFK2\nQ0RqR1LJcwCYBfQDTwPPRt87ufXWq7JrYBkoaY/fzOYD893952Y2DfhP4ALgQmCvu98ywn3V4xeR\nMaulWbqFZF7H7+7bgG3Rz/vM7L+AY+L2lfJvi0jtSXL7eyi0u1Zd3Q7WrFmXYQvLw7gN7prZccBp\nwE+ii64wsyfM7HYzmzVe7RCR6hX20h0gVPJsYejuWrVdyZM2LuWcUZrnXuCqqOf/ZeCG6OobgZuB\nj+TfL5fLvfxzU1MTTU1NJW+riFSm5ctXRHvpdpNU8rRH13YxcWJXVVbytLW10dbWNqb7lLyqx8wm\nAuuAf3H3LxS4/jjgQXc/Oe9y5fhFZFRaW9tZtuyz0W9xbj9dybOZlpZ3VGXgzzeaHH+pB3cN+Bqw\n090/nrp8gbu/EP38ceAMd1+ed18FfhEZlbA0gxE2T38dcAr5uf3+/keybOK4yXxwF/hD4GJgo5k9\nHl12LdBsZm8krJr0a+CjJW6HiFSpZGmG9F66mqU7Ek3gEpGK9prXfIhnnnmJUK45l/ze/syZ++js\n3JBlE8dV5hO4RERK7Zlnugh1+rMIqZ50Jc9+7r77xgxbV54U+EWkYi1fvgLYT1hnfy8whzBFyIEu\n5s2r45xzlmTYwvKkwC8iFam1tZ21a39BKN+Ml2aIl13eD/Rw++3XZdjC8qUcv4hUpKSSp59Qtple\nmmEX8+b1sW3b97NsYiaU4xeRqpRU8nQDV3Fwb79Xvf0RqMcvIhUnLMQ2SFLJsxxYT+j5P8G8ed01\n2duH8qjjFxEpqmQhtr3A0YRKntUklTx7uf326zNsYflTj19EKsrEiWfT3z+RZJMV5fbTlOMXkaqS\nLMSW3mRFuf2xUuAXkYowtHxzGQfX7e+jufl01e2PglI9IlIRtBDb6GhwV0SqghZiKy71+EWk7IXe\nfg9aiO3QNLgrIhUv6e1rIbZiUY9fRMra0MlaKt88FPX4RaSiJZO14t6+FmIrBvX4RaRsabLW2BWl\nqsfMZgG/DxxHKJZ9Fvixu+8uQhtFRApKJmt1A0cBLxF6+3Fuv5fbb1+ZYQsr17CpHjN7q5k9QBhF\nuQhYSAj+zcDDZvaAmb1lXFopIjVFk7VKa9hUj5ndAnzZ3Z8e5voTgD9396uHfXCzY4F/Jqyk5MD/\ndfdbzWwO8HVgEeEM4kJ378y7r1I9IjUqDOg2oslaY3dEg7vufvVwQT+6/qmRgn7kAPBxd18MvBn4\nn2b2BuCTwHp3PwH4YfS7iEhqQLebMFlrC0PLNzVZ60gdcnDXzO4CPhb3yM3sOOAr7v5HY/5jZvcD\nX4q+lrp7h5nNB9rc/fV5t1WPX6QGhQHdOjRZ6/AUq5zzYeCnZnaOmf0Z8APg7w+jMccBpwE/Bea5\ne0d0VQcwb6yPJyLVJxnQ1WStUjpkVY+7/x8zexL4N+BF4HR3f2Esf8TMpgHfAq5y971mycHI3d3M\nCnbtc7ncyz83NTXR1NQ0lj8rIhUkGdAFmE0yoNtFGCLsYt68Og3o5mlra6OtrW1M9xlNqueDwPXR\n1ynAWcCl7v7zUf0Bs4nAOuBf3P0L0WW/BJrcfZuZLQAeUqpHpLYNXX1zLmGyVgNJb/9F1q27XoH/\nEIqV6nkv8IfuvtbdrwE+Cnx1lA0w4HbgyTjoRx4ALol+vgS4fzSPJyLVaejm6e8n9PbDzNxwWSfN\nzW9S0C+Sw5q5a2aT3H3/KG73FkKCbiPhXA3gGuAR4BuEuQHPonJOkZo2bdo5dHVNQAO6R+6IZu6a\nWY5Qx9+Rf527749SNH/u7i3DPYa7/zvDn1W8Y6SGiUhtWLr0Urq6JhHW1483T9eAbimNNLj7KHCP\nmTUAjwEvEKbNzQdOJ5yH/V3JWygiVau1tZ329m2Enr4GdMfLSDN373T3D5rZp4CnSdbq2QL8h7s/\nV9KGKdUjUvXCDN0GQqBfQFiPJz2gu5N161Yq8I/BkS7S9iYzeyVwIdBE6O3HFJFF5IgMXXJ5GdDG\n0N6+1uMplZF6/FcCfwEcDzyfd7W7+/Elbdg49fhbW9u59dYfsH9/PZMm9XPlle/UG01kHNTVvYvB\nwQZCz34hYX5nMqA7Zcouurp+nGUTK9IR9fjd/VbgVjP73+7+50VvXRlobW3n4ou/QGfnRGAy0MMj\njzzJXXeh4C9SQkuXXsrg4FRCqearCBnkbcBUYCewh29843MZtrC61fRGLK95zXt55pm4dGwDIfir\ndEyklFpb21m27CZC9jhO8aQ3WNlJc/Ni1qxR4D8co+nx13TgnzjxXPr73wU8SHgTTiS88fbS3Hyq\n3ngiJZAM6L6IllwuPu25ewjuU4BvAtMJb7pGwqnmTNaufYzW1vYsmydSdZYvX5Ea0NWSy1mp6R7/\njBnvYe/eXkKKJ97PM97IeSfz5h3Qfp4iRZKkeDSgW0rq8R/C1Ve/A5hCqB2eDuwilJEZMJWOjkH1\n+kWK5OKLbwamEfZnigd0/yW6VgO646mme/xQaNOHmcCThJTPbqZM6VQPROQILV++grVrnyb09DWg\nW0rq8Y/CddctIwzq9hGC/q9I9oU5mu7uV7B06aVZNU+k4oV19jcCA4TVNjcS5oTGadUXqavbrqA/\njmo+8OdylzNr1gAh5fMoIfjvAvYQFo2aTHv7C+RyqzNspUjluuyyL5GkeGajAd3s1XzgB7jrrk8Q\nFoeaSgj29eRX+axadb/y/SJjlMutjtbZj5dlqCd0sroIvf89LFlyDLnc5Rm2svbUfI4/luQgDxBy\njqryETkSra3tnHvuTbjXEz5HqtkfD8rxj8GaNZ9j6tT9DK3y2UromewHjI6ObvX6RUbpssu+hPs0\nwmdIKZ5yosCf8vWvryDk9qcCzwGLgHcRSjxfAczgwgtXZNdAkQqRpHj6CEH/4BTPzJn7leLJiAJ/\nyjnnLKG5+RRClU8dYXJJG2HT553ANLq7Z6nKR2QEra3t3HDDg4S06QFgFuEzNJHQgTLggHbVypBy\n/AUM3RyikdBDmUG8gid00tJyvnorIgUkn5+dhKBfj2r2x0/mOX4z+4qZdZjZL1KX5czsOTN7PPo6\nq5RtOByhymcfoYfyEiHls5QQ9CcD9Xz601/NrH0i5SpZiyed4hkAOoBBwuq3exX0M1bqVM8dQH5g\nd+AWdz8t+vpeidswZuecs4QlS+YT0j2TCZUIbaRTPgMDmtglkpZM1FKKp9yVNPC7+8OELnO+EU9D\nysGGDXdEVT5TgXWEN3A3YYBqMjCD9vbnNbFLJPLHf/w5kpROI8nG6Ya2UiwvWQ3uXmFmT5jZ7WY2\nK6M2HFKo8slP+RxH6PUbMIEbbrgts/aJlIvly1fQ1TWJ0DlSiqfcjbTZeql8Gbgh+vlG4GbgI4Vu\nmMvlXv65qamJpqamEjdtqFDl0xpN7JpMspzDuwg7ds3DfQInnfRuNm26b1zbJlIukhRPPcnkx/7o\n5+mEmv1+pXhKpK2tjba2tjHdp+RVPWZ2HPCgu588xusyq+rJl1Qp9BKCvnbsEolNm3YOXV1TCGfC\nryacHe8nHAgmAXtoaTlPVXDjJPOqnkLMbEHq13cDvxjutuUiqfKZSrJjVz/hFLYOmMjatT/SrF6p\nOUuXXhqleLqAM4DdhLz+DMLgbjdLlixQ0C8zJe3xm9laQh3kUYRkXwthPdY3EkZ7fg181N07Cty3\nbHr8EK/ls5HQ0x8g2T0o2aRduwdJLcnlVrNq1YOEs949hLV40vtZ7MFsG4ODj2XYytqjzdaL7KST\n3s3mzXWEAax4M4kBQs3yFMJKg/PZsOGO7BopMg6SbRTjtXjiiY4zSdbi2UVLywXq7Y8zBf4SqKt7\nF4OD+W92zeqV2pLk9ePlltsY2gnay5Il89QJykBZ5vgr3cqV56IST6llSV6/jxDsHydkcOOJWvuY\nMuUlBf0ypsA/Rrnc5Sxe3Egyqzcu8TyR0PuZifs8Fi06M8NWipTG8uUraG/fRjI7V5umVyIF/sOw\nadN9qVm9TxKqGIbu1bt16yQt6SBVJanXz5+du5CQ658EOM3Nf6DZuWVOgf8wJbN6p5Ls1Tt045b2\n9v9WiadUjYsvvpkQ4LsJpZsTyJ+du3jxRM1nqQAa3D0CSYlnPSHfuZDQ+4/L2XbT0PAi+/c/mmEr\nRY7c0qWX0t6+m1CtMxmYS37p5pQpL6mcuQxocLfE1qz5XJTvjzdumUN+vr+v7yjl+6Wi5XKrU3n9\nHsJ7fTsht/+K6FZ9yutXEPX4i2Dy5LPo7Y3XJDmRkO+fRXqj9iVL5qrKQSpSKGGeAewgvK97CH3G\nZEkGLVlSPtTjHyf33nstB+f7dxFmM3YCk2lvf0FLOEvFWbToTAYHpzJ01c0phNDRCOxj5sweBf0K\no8BfBMnGLbsJwb+T8AEZup7PqlX3aLBXKsZJJ72brVvrCUE/vepmemMVrbpZiRT4i2TDhjtYuDD+\nUPQRDgKLSPL9U4GpvOc9n8iukSKjtHz5CjZv7iWcvcZ5/X5CxVoP4WDQSUvLBSrdrEAK/EW0Zct6\nGhvjXbo02CuVKZdbHVWrxUuTvJ9Qrz90qeXm5lO1NEmFUuAvspDv38PBk7saCB+iGWzdWs9JJ707\nu0aKDKO1tT1acTMO+icSlmQ4l7Ac+Wygi8WLJyuvX8FU1VMCSX3/TELZW1wJoc1bpLwNXXwtXn48\nPTdlDw0NOzQ3pYypqicjSX1/PNj7EqG31Eiohe4DprN27ROq9JGyMXTxtXiJ5S0kQb8L2MO3v31z\ndo2UolDgL5FNm+5LDfZOJvSeVOkj5engxddmE/L6EwlhYhA4QHPzH2owtwoo1VNiQyd3aVkHKT/J\nTlrpSVr1aH39yqRUTxlIJnep0kfKTwj6D1B48bUk6C9ePElBv4qoxz8OksHeaQxd1sFJb9u4eHEj\nmzbdl13XUke/AAARUklEQVRDpaaE7RM/Tcjld6HF16pD5j1+M/uKmXWY2S9Sl80xs/Vm9pSZ/cDM\nZpWyDeVgzZrPRTN708s6xHn+BkJPawabN/dqDX8ZN+97398Qig7iwVwtvlYrSp3quQM4K++yTwLr\n3f0E4IfR71Vvw4Y78ip9egkDvd2E0+peYBrt7S+wfPmK7BoqNWHRojPp7Z1CCPrpwdyhM3Obm9+k\nwdwqVNLA7+4PE2oZ084Dvhb9/DXgglK2oZwMrfSJ9+ydTn6lz9q1P1Klj5RMsgbPAZKdtA5efG3J\nkgWaZ1KlshjcnefuHdHPHST7FdaEZFmHBkJONb2mz/boVnM599xVCv5SdEuXXppag6eLEPA1mFtr\n6rP84+7uZjbsCG4ul3v556amJpqamsahVaV3773XsmzZTSTT4uNlHeJ/RwPuUzj//JV85zs36lRb\niiLsorWN5H13BuF9t5dwthkGcxcu7GfTpu9m11AZk7a2Ntra2sZ0n5JX9ZjZccCD7n5y9PsvgSZ3\n32ZmC4CH3P31Be5XNVU9hSS103Glj2r8pXSSyrIZhEB/MqGseOhyDAsXHmDLlvXZNVSOWOZVPcN4\nALgk+vkS4P4M2pC5XO5ymptPIan0Sdf4H0VY6G06fX1HcfTRb82uoVLxhq62GRcTHBz0Gxp2KOjX\niJL2+M1sLbCUEMk6gOuB7wDfIHRvnwUudPfOAvet6h5/7KST3h3lXOOe/1GElM/Qnv/cufvYvv3h\n7BoqFSmZoDWdpFa/jrBZ0CSSNXh2s27dp5VWrAKj6fFrAlcZWLTozKjKYiahp38ymuAlRyoE/ftJ\nBnJ7CBO04g1VkrX1W1rO09r6VUKBv4IkwX868CLJeim7SQbe9in4y6gkPf2phEC/h1CmCdoovbop\n8FeYJPjHC2T1Ewbj1POX0Rva0+8lvJcaCT3+/YR0zxRCrf58lW1WmXId3JVhbNmynrlz95FM8EpP\n7OojVGNMY/PmXu3gJQUNzen3cfAEranE5ZwK+rVLPf4y1NDwTg4cSPfW4p5/ut56HwsX9qsKQ142\ndNG1/PdO+qwxTNDSWWN1Uo+/Qt1336cIZZ4NJD3/PYRCqJMJH+qZbN1ar+WcBQhB/9xzV3FwT38W\nocPQE/2+R0FfFPjL0TnnLKGl5VzCB7aB0MOfRDLDt49wIJim4C/kcqtZtuw63GeSLLqWXoqhgbic\nU+NDAkr1lLWhlRkTCWv51KO0j8TCjNzHCR0DCD19VYTVMlX1VIGkQiP9wa4nLOzWT5gXNw3Yq0le\nNSasvfMChTsGyunXKuX4q0AudzktLRcQZlpOJEn79BM+5CcT6v7r2bFjLg0N79SqnjXgpJPeHS24\nls7pn0FyNpjk9BcuPKCgL0Oox18h4sE791mEA0B6hu8ewoFgKiGfu5eWlgs0E7NKJfM9ppGU+cZn\ngVp0rdYp1VNlknK9SYRJOD2ED/50FPxrQxL04549qNxX0pTqqTKh2idO++wlWdVzL+GDP4tQBtoD\nzGTVqge1jWMVOfrot6Z6+t2E/7OTlGwOHchV0JfhKPBXmFzuctat+wx1dR0k+/fWEQJAnNftIeR8\np7F27UZt4F7hWlvbqa8/nR07ppFsotJAsvZOGOOJg/6SJfOV05cRKdVTwY4++q2pYNBL6O03ElI/\nHYSKjmnotL9yhaqutYT/Y7x66wDhfzxIOPtL1t5pbj5FC67VOKV6qtz27Q9Hm7fvI3zwJwMGbANO\nAE4BdgL1bN06XRU/FWb58hWsWnUfIZUTr6cfB/09hKA/lXCw301Ly7kK+jIq6vFXgYOrPA4wtOKn\ni9BbjHuFWoa33IUNeroIQV5VXDJ6quqpIUN38jKSih+LvnoJZwRJHlgrM5af1tZ23vOeT9DXdxTh\nQN0XXZPeme1R4klbEyfu4777PqWds+RlCvw1JpnJOYFQ5bOHZMBXef9yF5Zf+A/C/2oGoXJHM7Vl\nbMo6x29mz5rZRjN73Mweyaod1WTDhjtobj6VkNePK34K5f2fB4ytW2didha53OqsmiyRRYvOjNbc\nmU1SrhkH/RnAVkLQnwrsZeHCfgV9OWyZ9fjN7NfAm9x91zDXq8d/mFpb2zn//L9kYGAeB+f9nyAc\nCHYT8v6h968FvLIRZmRfgfsrCWdjcT5/MuEAfhSamCVjUdY9/siIjZPDc845S+jvfyxV8dNACPBP\nErbe6wEWA/MJNeB1bN5sqvoZZ0uXXsqyZX8dBf0ZJGvuDBA+GnOAF0gH/SVL5ivoyxHLMvA78K9m\n9jMz+9MM21G1tmxZz+LFjYQe4z6S1M90Qr54L8mqjj0cODCTZctu0oSvEmttbWfSpDOiRdZeQfh/\nxKmd/Qwt15xD+J+Fck0NyEsxZJnqWeDuL5jZXGA9cIW7P5y6XqmeIgmDhm2EIDKN0IOMJwL1EnL/\n/cCzxCWCqhYpjTAA/zQhuMcVWPs4OLXTF10/kcbGbu6991r9L2RUKqaqx8xagH3ufnPqMm9paXn5\nNk1NTTQ1NWXQuuowNO9fTwg0+wgHgTjYDAK/iX5X7r+Ywgzc/wPMIyyy10gy9jKP5PXvIIy9qOxW\nRqetrY22traXf1+1alV5Bn4zmwLUufteM5sK/ABY5e4/SN1GPf4SCPX+u0jKOuPe/2RCtc9JhN7/\n/yMdgFpaztMEocPQ2trOhReuoLu7gfCapwdwIRx8X0dyxhV6+XV1e/jOd65XL1/GrGx7/Gb2aiDu\nRtYDd7v7TXm3UeAvkdD7/DLwKpLefw8h9TOPMKA4g9D7NEIwalDKYYyGpnXqCb383ujaeHJd/Dpr\nfoUUR9kG/tFQ4C+9sMjbBELQibfr2xdduw84GqV/xi45sC4gSevEZ1a9JLX5Wk5Diq8SyjklQ9u3\nP0xz85sJgX0PIdiHVEP47oTe/xsJE79+BcDmzfWYvUvVP3lyudVMmHA6q1bdSTibmk5IlXWRlGkO\nkGyacoAw4N5IY+M+1q27VkFfxoV6/ALEC73tI6wEmV7vZ4Aw8audJP+/ifQZQK0vBZzLreaGG27D\nfTqh5x6ncLqiW+wjHESPIinTfAXx66cBXCkmpXpkTEKKYjVwLCF4TSfZ4CXO/z9DUv65idCjDWMA\n8+fXc9ttH6uZMYBQJvs9wsFyCkkePz5oxksuTIgu20MymW4iU6fu5+tfX1Ezr5eMDwV+OSyh8ud5\nQhoi7r0OMrT88xlgLiGYvRjdJhwAqj2ghYDfSui1pwN+nMeHcJb0E8JrtDf6CgcIsy6uv/5cVUlJ\nSSjwy2FLlgeuJwSsuLpnAiG41REqU/YAx5AMAkM1poFyudX8zd/cxYEDewhnQrM4OODXEQ6OvYS0\n2BzgIdJpnWp5PaR8KfDLEUsqVKaRBLvJJAcASOYANDA0DQTxQcBsHxddVFlBr7W1nY985DN0dMRn\nP30kB8F4r+N0wHeSVM9O0gFfJZoyXhT4pWiGT2+kB4HTaSAIaY4dhHVooBIOAq2t7XzgAyvZvXsv\n4XkOkBzw4oqcdNorP+DviX4PaZ0JE7pZuXKZ0joybhT4pejCpKRHSQ4A6UHgdBqoi9Dzj99/ca57\nR3R9nEKaSkNDL9dcc3ZmwTEc1NYTAntj9DUp+hog6d0Pkhzk4nWO4v0OFPClPCjwS8mEA8DPSFJA\nRgiOcRoorluPDwL1hMDfQBIsX4weLb5d6SuEcrnVfPrTdzAwEP/NHsKBi7zn0UCYz5Du3adLW48h\nKc2sI2ygMoX6+h6uu+4cBXzJjAK/lFzoLX+XOGAnaaAGQkCMDwKQBPh4ALSBkDdvYGiFUF3qtunv\nSeXQrFkD3HXXJw46MIT2PEQ42yDvMeI9iUn97TjYQzjwWIE29xB68/tJBm3XR+0Jm6HPnj3InXde\nXbWVTFI5FPhl3ISe9FcZGOgmpIEmEQ4A+b3n9KBwOijHFULpg0H6e7qH3Z+6b/px4pmw8Qbl+Y+R\nDvLpg8lgdNn+6DHyz1JmkqRzegjzGTT5SsqTAr9kIqSBniAE+/x8eR3JQOgERj4YpL/HOfV0IIeh\nwT0+28g/IMTf47EIUn+7J3V7CGcjhcYlJqF0jlQCBX7JVOEKmThAx7n0kQ4G6e/7ODiQU+Ax4kFY\nCjxGT4H7xTl7CD37eLXM/EqkLi666OSyrEQSSVPgl7KR1MTvIATcKRzcW88/GKS/pytr4kAOB581\nDHdQGCCZb0Dqb6dz9qCevVQ6BX4pW8mYgJPk5+MB4kI5/nQt/XDBvY8kHUSBx4hnGD/H0HEC5eyl\neijwS0VJ6ukL9fp7CIPGI+X448qgeACYAo+lShypbgr8UlWGlmoO1+ufShzYa221UBFQ4BcRqTna\ngUtERA6SWeA3s7PM7Jdm9rSZrciqHSIitSaTwG9mdcCXgLOAE4FmM3tDFm3JSltbW9ZNKJlqfm6g\n51fpqv35jUZWPf7fA/7b3Z919wPAPcD5GbUlE9X85qvm5wZ6fpWu2p/faGQV+I8h2a4JQmH1MRm1\nRUSkpmQV+FWuIyKSkUzKOc3szUDO3c+Kfr8GGHT3z6Vuo4ODiMhhKMs6fjOrB/4f8HbC4imPAM3u\n/l/j3hgRkRpTn8Ufdfd+M/sY8H3CdMvbFfRFRMZH2c7cFRGR0ijrmbtmdoWZ/ZeZbTKzqlwI3cw+\nYWaDZjYn67YUk5n9bfS/e8LMvm1mM7NuUzFU88RDMzvWzB4ys83RZ+7KrNtUbGZWZ2aPm9mDWbel\n2MxslpndG33unozGUgsq28BvZm8DzgNOcfeTgL/LuElFZ2bHAmcCW7JuSwn8AFjs7qcCTwHXZNye\nI1YDEw8PAB9398XAm4H/WWXPD+Aq4Emqs7Lwi8B33f0NwCnAsOnzsg38wF8AN0UTvHD3HRm3pxRu\nAf5X1o0oBXdf7+7xbik/BV6VZXuKpKonHrr7Nnf/efTzPkLgeGW2rSoeM3sVcDZwG8n+mlUhOqN+\nq7t/BcI4qrvvHu725Rz4XwssMbOfmFmbmf1u1g0qJjM7H3jO3Tdm3ZZx8CfAd7NuRBHUzMRDMzsO\nOI1w0K4Wfw/8Ncn2bdXk1cAOM7vDzB4zs38ysynD3TiTqp6Yma0H5he46jpC22a7+5vN7AzgG8Dx\n49m+I3WI53cN8M70zcelUUU0wvO71t0fjG5zHdDn7mvGtXGlUY3pgYOY2TTgXuCqqOdf8cxsGbDd\n3R83s6as21MC9cDpwMfc/VEz+wLwSeD64W6cGXc/c7jrzOwvgG9Ht3s0GgB9hbvvHLcGHqHhnp+Z\nnUQ4Qj9hZhDSIP9pZr/n7tvHsYlHZKT/H4CZfZhwav32cWlQ6f0WODb1+7GEXn/VMLOJwLeAu9z9\n/qzbU0R/AJxnZmcDjcAMM/tnd/9Qxu0qlucIGYRHo9/vJQT+gso51XM/8EcAZnYC0FBJQX8k7r7J\n3ee5+6vd/dWEf9rplRT0D8XMziKcVp/v7r1Zt6dIfga81syOM7MG4I+BBzJuU9FY6IXcDjzp7l/I\nuj3F5O7Xuvux0eftIuDfqijo4+7bgN9EsRLgHcDm4W6faY//EL4CfMXMfkHYVLVq/kkFVGMK4R8I\nG+Guj85qfuzul2fbpCNTAxMP/xC4GNhoZo9Hl13j7t/LsE2lUo2fuSuAu6NOya+AS4e7oSZwiYjU\nmHJO9YiISAko8IuI1BgFfhGRGqPALyJSYxT4RURqjAK/iEiNUeAXEakxCvwiIjVGgV9klMzsjGhj\nmUlmNjXarOTErNslMlaauSsyBmZ2I2GRr8nAb9y9KneGk+qmwC8yBtHqlT8DeoDfd32ApAIp1SMy\nNkcBU4FphF6/SMVRj19kDMzsAWANYVOgBe5+RcZNEhmzcl6WWaSsmNmHgP3ufo+ZTQB+ZGZN7t6W\ncdNExkQ9fhGRGqMcv4hIjVHgFxGpMQr8IiI1RoFfRKTGKPCLiNQYBX4RkRqjwC8iUmMU+EVEasz/\nB0zwHvVteGoyAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "%matplotlib inline\n", "\n", "from numpy import *\n", "from pylab import *\n", " \n", "# define the function to evaluate\n", "def f(x):\n", " return x**2 +2*x + 3\n", " \n", "range_begin = -5\n", "range_end = 5 \n", "x = linspace(range_begin, range_end, 1000)\n", " \n", "clf() \n", "plot(x, f(x), 'bo')\n", "xlabel('x')\n", "ylabel('f(x)')\n", "title('Demonstration Quadratic Plot')" ] }, { "cell_type": "markdown", "metadata": { "variables": { "range_begin": "-5", "range_end": "5" } }, "source": [ "The code above calculates values for the quadratic equation: $$f(x) = x^2 +2x + 3$$ \n", "\n", "The code then runs this equation for the integer values from {{range_begin}} to {{range_end}} and plots these values in a newly generated plot above." ] }, { "cell_type": "markdown", "metadata": { "code_folding": [ 0 ] }, "source": [ "---\n", "This document is a work of Mach 30 and is licensed under the Creative Commons Attribution 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by/3.0/." ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.4.3" } }, "nbformat": 4, "nbformat_minor": 0 }